
Chapter 1 - Texx Language Description

Texx
Version 0.1

By

Jose Aguirre

June 19, 1992

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Texx by Jose Aguirre

Copyright 1992 by Jose Aguirre
All rights reserved.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Table of Contents
Table of Contents i
Preface iv
Disclaimerv
Chapter 1 1
Introduction to Texx 1
System Requirements 1
Language Description 1
Comments 2
Strings 2
Hexadecimal Strings 2
Symbols 2
Numbers 3
Operators 3
Implied Semicolons and Statement Continuations 3
Expressions and Texx Operators 3
Expressions 3
Operators 4
Concatenation 4
Arithmetic 4
Comparative 5
Clauses 6
Null clauses 6
Labels 6
Assignments 6
Instructions 6
Commands 7
Return Codes 7
Chapter 2 9
Texx Commands 9
ADDEXECMENU 9
ADDRESS 11
DO 13
DROP15
GOTO16
EXIT 17
IF 18
LEAVE 19
NOP 20
PATH 21
SAY 22
SIGNAL 23

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Chapter 3 25
Introduction to External Commands 25
Description of External Commands 25
About Finder Events 26
External Commands 27
FINDER SUITE 29
ABOUT 29
CLOSE WINDOW 30
DRAG SELECTION31
DUPLICATE SELECTION 32
EMPTY TRASH 33
GET INFO 34
MAKE ALIAS 35
MOVE SELECTION36
MOVE WINDOW 37
OPEN SELECTION 38
PAGE SETUP 39
PRINT SELECTION 40
PRINT WINDOW 41
PUT AWAY 42
RESIZE WINDOW 43
RESTART 44
REVEAL 45
SET VIEW 46
SHARING 47
SHOW CLIPBOARD 48
SHUTDOWN49
SLEEP 50
ZOOM WINDOW 51
REQUIRED SUITE 52
OPEN APPLICATION 52
OPEN DOCUMENTS 53
PRINT DOCUMENTS 54
QUIT APPLICATION 55
Miscellaneous Standards 56
DO SCRIPT 56
Chapter 4 57
Installation Requirements 57
Operating Modes 57
Special Features 57

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Installing Texx 58
Prepare for Installing Texx 58
Installing Texx for Automatic Startup 58
Installing Texx for Manual Startup59
Operating Texx 59
Texx Menus 59
File Menu 59
Edit Menu 60
Exec Menu 60
Window Menu 61
Appendix 63
Types of Error Messages 63
Texx Error Messages 63

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Preface

Texx is written and copyrighted by Jose Aguirre. This is a shareware offering, meaning if you
use this product, I would like to receive $25 from you. I think you will find that $25 is a very
reasonable price for a product such as this. For $25 you will get the latest version, if you don't
already have it, notification of future releases, and I'll cut you a deal on upgrade prices, assuming
that I am still publishing this product. Since I plan to release significant upgrades, I also plan on
increasing the shareware fee. So, for $25, you are getting a pretty good deal. Included with the
Texx package will be a registration form that should be filled out and sent in with your shareware
fee. One last note, if you do not compensate me for my work, it will be very difficult for me to
continue supporting and upgrading this product, I will be forced to move on to something else.
Please support your shareware authors.

I grant permission for this product to be distributed freely with the following restrictions:
1. The original compressed file that includes the Texx application, all the documentation,

including the shareware registration form, and sample Texx execs must be the only thing
distributed. None of the files may be altered. If you have written execs that you think
would be useful to others, submit them to me and I will include them on the next release
or I will release a collection of them. Any execs submitted to me for release will be
considered public domain and the authors should not expect any royalties. Of course,
exec authors are free to release execs themselves and charge a shareware fee for them. I
will not be responsible for execs released by other authors.

2. This product may not be sold by anybody but myself, or any fees collected by anybody
else except for costs incurred for the shareware distribution of this product. Such fees
would include connect and download fees, disk duplication fees, and printing fees. Since
I am the author and sole owner of this product, I am the only one authorized to profit
from its distribution. Online services and bulletin boards are not authorized to charge any
additional charges for downloading this product other than what they normally charge for
connect and downloading. If the documentation is printed, the only allowable fee will be
the cost of materials.

3. The documentation for this product may be printed and distributed, however, the
shareware registration form and a diskette containing the original Texx package must be
included with the printed documentation. See above for any fees that may be collected
for the printing service.

The shareware fee of $25 dollars is for a single copy, i.e. one CPU. If you will be using it on
more than one CPU, an additional shareware fee will be required. I will also sell site licenses for
users of multiple CPUs. Please note the need for a site license on the registration form.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Disclaimer

I, Jose Aguirre, or any company or organization represented by me makes no warranty or
representation, either expressed or implied, with respect to this software, its quality, performance
or fitness for a specific purpose. This software is licensed "as is" and the entire risk as to the
suitability, quality and performance is left to the buyer. In no event will Jose Aguirre, or any
company or organization represented by Jose Aguirre, or any suppliers and distributors be liable
for direct, indirect, incidental or consequential damages resulting from any defect in the
software, documentation, or any part of the Texx application package. Additionally, the above
mentioned parties shall have no liability for any program, data, software, or hardware which is
lost or damaged. The above mentioned parties assume no responsibility for the physical,
emotional, monetary, or any other damages as a result of the usage of the Texx application
package or as result of defect with the Texx package. In other words, if something bad happens
to you for using Texx or because of a defect in Texx, that is your responsibility and not my fault.
Before you trust "any" software with your business or critical data, you should thoroughly test
your environment and prepare disaster recovery plans should the need arise.

The above paragraph should not scare anybody from using Texx. Every function that this release
of Texx supports has been tested and so far has been found bug free. However, since there are so
many different flavors of Macs and different releases of System 7, not to mention all the different
extensions and control panels that Mac users use, some bugs are bound to be found. This manual
will later list what steps should be followed and what documentation to provide in order for the
bug or error to be fixed. In the event an error is discovered, I may be reached at the following
places:

1. Compuserve - 71407,441

2. Jose Aguirre
3704 Edgar Park Ave.
El Paso, Texas 79904

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Chapter 1
Texx Language Description

Introduction to Texx

The Texx application adds "scripting" ability to the Apple Macintosh computer. The Texx
language is based on an IBM scripting language mostly found as a component on IBM's VM
operating system. The name has been changed so as to avoid any copyright infringement or any
other legal problems. Every effort has been made to conform to the IBM language definition.
However, this version, 0.1, is only a subset of the formal language. Also, since the Macintosh
environment is like no other, changes were necessary to make it more useful in a Macintosh
system. Those changes, up to now, have been minor and should pose very little problems for
experienced "exec" authors.

The Texx language can be described as a cross between C and Pascal with the simplicity of
HyperTalk. Although that is a very simplistic description, the Texx language has similarities to
the three languages. It is not as strongly typed a language as Pascal while at the same time does
not have the complex features of C. It is uncomplicated and forgiving like HyperTalk. Despite
its simplicity, the Texx language is extremely powerful and will satisfy the experienced
programmer, and forgiving enough that the non-programmer will be able to write very useful and
productive "execs" without much difficulty.

Texx gives the user the ability to automate repetitive tasks quickly, efficiently and without errors.
Texx uses the interapplication communication (IAC) facilities provided by System 7. At the
present time, only Apple Events are used. Publish and Subscribe and the Edition Manager
facilities are not used at the present. Future upgrades will make full use of the IAC capabilities.
Texx will support the four core Apple Events. Future upgrades will provide support for Apple
Events as stated in the Apple Event Registry and also provide a mechanism for supporting
custom Apple Events. As long as other applications support the standard Apple Events,
communication between them and Texx is possible.

System Requirements

Since Texx makes extensive use of IAC, System 7 is required. Texx will not operate with
anything less than System 7.0. That also means a minimum of two megabytes of memory just
run System 7. A more realistic memory requirement is a minimum of four of five megabytes of
memory depending on the applications that are being run. That is because Texx and whatever
application that it is communicating with must both be running. Of course, virtual memory
would ease the real memory requirements.

Language Description

The Texx application is an interpreter much like HyperTalk. Texx "execs" are interpreted rather
than compiled. In Mac circles the programs are called "Scripts", in IBM circles the programs are
called "Execs". Both terms will be used interchangeably throughout the documentation, the

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
meaning will be the same, regardless of which one is used. Execs are interpreted line by line and
word for word from left to right. The advantage of using an interpreter is that when errors occur,
the interpreter stops immediately and the error is usually clearly indicated. When corrected, the
exec can be re-run immediately.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
A Texx exec must start with a comment. This is an IBM implementation restriction, its purpose
is to distinguish it from an older, obsolete interpreter that implements a different language.
Following the opening comment, are clauses which are composed of sequences of tokens.
Tokens are scanned from left to right and may be separated by zero or more blanks. Blanks are
generally ignored, however, sometimes they are used to separate tokens. Clauses are terminated
by a semicolon (;), a carriage return implies a semicolon, however, a carriage return does not
necessarily terminate a clause. A semicolon does terminate a clause. That means that the
semicolon is not necessary to terminate a clause, however, it is good practice to terminate Texx
clauses with semicolons.

Tokens are composed of sequences of ASCII characters. Some characters have been changed
from the standard IBM EBCDIC character set because an ASCII version does not exist. For
those that don't know, IBM uses the EBCDIC character set for their mainframes while the rest of
the world uses the ASCII character set. The tokens may be any length up to 254 characters. The
individual tokens may be separated by either blanks or other tokens. Tokens are separated into
several classes as follows:

Comments:

Any sequence of characters that are delimited by the C-like /* and */.
Comments may be on multiple lines, however, this implementation restricts
the length to 254 characters. Comments may appear anywhere a blank may
appear and are ignored just like blanks. Comments do, however, act as token

separators.

/* This is a valid comment */

Strings:
Any sequence of characters that are delimited by either the single quote (')
or the double quote ("). There is no distinction between the two different
quotes, however, they may not be mixed. If a string is started with a single
quote, it must be terminated with a single quote and vice versa. Two

consecutive single quotes ('') in a string delimited by single quotes
represent the single quote character in the string. Same rules apply to the use of

double quotes. A string is a literal constant and may not be altered.
The implementation maximum size is 254 characters.

These are valid strings:

'John'
"This is a string"
'I can''t get this' /* same as "I can't get this"*/

Hexadecimal Strings:

Not supported in this release.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
Symbols:

Sequence of ASCII characters from the alphabetic and numeric characters
(A-Z, a-z, 0-9) and/or from the characters @#$!? and underscore. Any
lowercase alphabetic characters are converted to uppercase. Symbols must
begin with an alphabetic character. The maximum length for this

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
implementation is 254 characters. A symbol may be a label, Texx keyword,
or variable. If a variable is used before it has been assigned a value, its

default value is the name of the variable itself.

These are valid symbols:

Address
Hi!
WHO?

Numbers:

Sequence of characters from the numeric characters. This implementation
only supports integer numbers. Decimal points (.) and exponential
notation are not allowed. Optionally, a number may be preceded by a plus (+) or

minus (-) sign. This implementation uses a LONGINT size to represent numbers,
that is a range from -2147483648 to +2147483647. A number, including sign, must
be consecutive characters without intervening blanks or other characters.

These are valid numbers:

12
-17
+100

Operators:

These are special characters that are used in expressions. They are generally
used in arithmetic and logical expressions. Operators that are represented

by multiple characters must appear without intervening spaces or other
characters. Each supported operator will be discussed in later sections.

Implied Semicolons and Statement Continuations:

A semicolon (;) marks the end of a clause or statement. A carriage return
ends the current line and also implies the presence of a semicolon. For the
most part, a carriage return terminates the clause or statement. However, in
certain circumstances, if a clause or statement is continued to a second line,
Texx may ignore the implied semicolon of a carriage return and continue
interpreting on the next line. Continuations are strongly discouraged, all
statements should be on only one line and terminated by a semicolon. In this

release of this implementation, continuations are not guaranteed to work. If you must
continue a statement or clause, the line being continued must end in a comma. The
comma is discarded and the following line is treated as if it were part of the
previous line.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Expressions and Texx Operators

Expressions:

Texx clauses, also known as statements, consists of terms interspersed with
operators and other special characters. Terms may be strings, symbols or

numbers as defined above. Evaluation of an expression is left to right,
modified by parentheses and the algebraic operator preferences.
Expressions are evaluated in their entirety unless an error occurs during their

evaluation. Expressions can be thought of as Texx instructions, Texx language
instructions or assignment statements.

Operators:

Operators, except for prefix operators, act on two terms yielding a single
result. Operators may be arithmetic or logical operators. This
implementation defines three types of operators.

Concatenation:

The concatenation operator is used to combine two strings into one. Even
though the previous sentence said strings were combined, the concatenation
operator applies also to numbers. If numbers are used, they are converted into

strings and then combined yielding a string result. Numbers may be used for one
or both operands. The operands are combined without any blanks or other characters
inbetween them. The concatenation operator is the double vertical bar (||).

Example:

"This is string one" || "This is string two" yields
"This is string oneThis is string two"

x = 1;
"This is string " || x yields "This is string 1"

Arithmetic:

The normal arithmetic operators common with most programming
languages exist with Texx. The valid operators are listed below in order of
operator precedence. In cases where like operands appear, they are
evaluated in left to right order. Parenthesis may be used to alter the order of
the evaluation.

** Raise a number to a whole number power. This operand has the
highest priority of any other operand.

5 ** 2 yields 25
Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

* Multiply numbers by each other.

5 * 2 yields 10

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
/ Divide numbers. Same operator precedence as the Multiply
operator.

10 / 2 yields 5

% Divide and return the integer (whole number) part of the result.
The remainder or decimal part is lost. Same operator precedence as
the Multiply operator.

11 % 2 yields 5

// Divide and return the remainder or modulo result in this
implementation. Same operator precedence as the Multiply operator.

11 // 2 yields 1

+ Addition operator. Lower precedence than the operators listed
above.

5 + 2 yields 7

- Subtraction operator. Same precedence as the Addition operator.

5 - 2 yields 3

Additionally, the plus (+) and minus (-) operators may also be used as
prefix operators. They are used to set the sign of numeric entries.

Comparative:

The comparative operators return boolean results of TRUE or FALSE.
These operators are typically use with IF statements.

= True if the terms are equal.

== True if the terms are exactly equal. In this implementation, the '='
and '==' operators are treated identically.

!=, /=, ><, <> True if the terms are not equal. All four operators
have the same definition and are treated identically.

!==, /== True if the terms are exactly not equal. Both operators have
the same definition and are treated the same. In this implementation,
the exactly not equal operators are treated the same as the not equal
operators above.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
> True if the first term is greater than the second term.

< True if the first term is less than the second term.

>= True if the first term is greater than or equal to the second term.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
!< True if the first term is not less than the second term.

<= True if the first term is less than or equal to the second term.

!> True if the first term is not greater than the second term.

Clauses

Clauses are what a Texx exec is composed of. A clause is the basic interpreted
instruction of the Texx language. A clause may be divided into five different types.

Null clauses:

A null clause consists of only blanks and/or comments. A null clause may
be a blank line used to improve the exec's readability or a comment
describing the exec. In either case, null clauses, are ignored by the
interpreter. A null clause is not a statement. It may not be substituted for a
null statement, the NOP instruction is provided for that purpose.

Labels:

A label consists of a single symbol followed by a colon without an
intervening space. A label must be the first token on a line and does not belong

to any statement that may follow it. Labels are used for branching. The branch
instruction referencing the label should not include the colon. A label may be used as a
statement by itself. It is not an executable instruction, it simple creates a
symbol table entry.

Assignments:

Assignments are single clauses of the form symbol = expression. An
assignment statement causes the symbol to be assigned a value.
Assignment statements may be used to assign numeric or string values. If a
symbol is assigned a string value, it may later be assigned a numeric value
and vice versa. The Texx language is not a "typed" language like Pascal or
C. Therefore, variables can take on any value, string or numeric.
Obviously, the assignment must not have mixed operands, i.e. string and
numeric. The only exception to the rule is the concatenation operand as
explained above.

Instructions:

An instruction is a Texx language clause. An instruction may be a single
clause or multiple clauses grouped into one by another clause. Such a
grouping-like clause would be a DO loop. A DO loop groups a series of
instructions that are treated as one. These grouping-like instructions may also be

nested within themselves or others.
Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
Commands:

Commands are single clauses consisting of just an expression. The
expression is evaluated and passed on as a command to some external
environment.

Return Codes

Certain Texx instructions and commands will return a status code indicating the success
of the previous command or instruction. The return code is returned in the pre-declared
variable RC. RC is a numeric variable that may be checked after the instruction or
command has been executed. A return code of zero (0) is considered a successful execution of
an instruction or command. Anything other than zero is considered to be an error or a warning.
The return code should be checked anytime an instruction or command is used that sets it.
Please note that the return code is only set by routines that set it. If checked, the numeric
value returned will be the last one set. Some return codes may indicate that something needs to
be done before the command or instruction will execute without error.

There are some additional return codes that had to be defined due to Apple's
implementation of Interapplication Communication. Not that Apple's
implementation is bad, it provides additional information that is useful in debugging
not only the Texx application, but also Texx execs. Two additional return codes have

been implemented for this reason. AERC is the Apple Event version of RC described
above. It contains the return code of the Apple Event functions used to assemble and send an
Apple Event. To send an Apple Event to another application, there are several steps, any of
which could fail. If the Apple Event was successfully sent, then AERC will contain the
return code of the target application's handler. A value of zero (0) is considered a
successful handling of the Apple Event. Anything else is considered an error or warning.

The second additional return code is AERCSTRING. The target application may
send a string value that gives a more descriptive error message. Texx will put this
string in the pre-declared variable AERCSTRING.

Note: Even though these are pre-declared variables, at the present time they may not be
assigned values. These variables are always cleared before any routine that may set them.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

This page was intentionally left blank.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Chapter 2
Texx Instructions

Texx Commands

ADDEXECMENU

ADDEXECMENU pathname ;

Where pathname is a single symbol or string denoting a pathname of a
TEXX exec. The pathname must be a full pathname to the exec. If used with

the PATH command, described later, the pathname may be a partial pathname.

This command is used to add entries to the EXEC menu. These entries are
TEXX execs whose names are appended to the EXEC menu. Once added

to the menu, selecting an entry will cause the execution of the exec. Even though
a full pathname is provided, only the name of the exec will appear in the EXEC
menu. Please note that this command is not part of the formal language description,
it was added to ease the execution of execs.

When ADDEXECMENU is used, there are verification steps that must be
passed before the exec is added to the menu. First, a full pathname must be
supplied. A pathname is considered full if it contains a volume name. What
is supplied as a volume name is checked against the currently mounted

volumes. Next, the pathname is checked for valid characters and valid lengths
of folders and file names. Then the existance of the file is checked and finally, the
file is checked for a file type of 'TEXT'. If all of the verification tests pass, then
the name of the exec is appended to the EXEC menu. If any test fails, a return code
is returned in the pre-declared variable RC. RC should be checked after each
ADDEXECMENU instruction is executed.

Return Codes:

5005 - Out of memory. The memory needed to execute the
command was not available.

5020 - Error pop'ing the expression stack. There was an error
retrieving the value of the expression, i.e. pathname.

5021 - Error in expression. An error was detected in evaluating the
expression, i.e. pathname.

5025 - Expression stack overflow. The expression stack
overflowed during evaluation of an expression. The

expression stack is large enough where this error should not
occur.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

5044 - Invalid path. The pathname supplied was found to be
invalid. A number or errors will cause this error. A partial

pathname, invalid characters, invalid lengths of folders and

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
volumes are the most common errors. If this error is

reported, carefully check the pathname for errors. If the
PATH instruction is used, it may be in error.

5050 - Invalid path name. This error is identical to 5044. Please
refer to that error.

5052 - FSSpec error. An FSSpec is generated during the
processing of the command. If this error is returned, it

probably means that the exec does not exist.

5053 - Alias error. This error is similar to 5052. The same thing
applies to this one.

Examples:

/* This will add the Resedit.exec to the menu */
PATH 'External HD 105:MPW:Applications';
ADDEXECMENU Resedit.exec;

/* This will add HyperCard.exec to the menu */
HyperCardPath = 'External HD 105:HyperCard Folder';
PATH HyperCardPath;
ADDEXECMENU HyperCard.exec;

/* This will add an exec to the menu and check */
/* the return codes for completion */
PATH 'External HD 105:MPW';
ADDEXECMENU MPW.exec;
IF RC <> 0 THEN
DO

SAY 'ADDEXECMENU - MPW.exec failed.';
SAY 'RC = ' || rc;

END;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
ADDRESS

ADDRESS [environment]

Where environment is a single symbol or string, which is treated as a
constant.

This instruction is used to effect a change to the destination of command(s).
The command destination is in effect until another ADDRESS instruction

is executed. An ADDRESS instruction must be executed before any
commands can be sent to any environment or application.

An ADDRESS instruction with an environment will target that
environment or application. Texx will verify that the name is valid and that
the application is active. If either of the two tests fail, a return code will be
returned in the variable RC and the ADDRESS instruction will have no affect

on the previous valid ADDRESS instruction.

An ADDRESS without an environment operand will simply swap the
current setting with the previous setting. It may be used to toggle between
two different environments or applications. If executed and no previous
ADDRESS was executed, an error code will be returned in RC and no
swapping will occur.

Note The use of this command is a little different from the formal
language definition. The TEXX application will verify the environment by
checking for a valid name, i.e. valid length and characters. If a valid name
is supplied, then a check is made to see if the targeted application is active.
The target application must be active in order to send it any commands. If a
non-zero return code is returned, then TEXX is not able to send any
commands to the target. The ADDRESS command may also be used to check

for an active application.

Return Codes:

5017 - Invalid process name. The application or environment name
used was invalid.

5018 - Process not active. The application or environment is not
currently active. Since it is not active, it is not possible to

send it any commands.

5034 - No previous ADDRESS executed. A swap of command
destinations could not be performed because a second value
not present.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
Examples:

ADDRESS 'APP1' /* Will route commands to APP1 */

App = 'APP1'
ADDRESS App1 /* Will route commands to APP1 */

ADDRESS 'APP1' /* Will route commands to APP1 */
ADDRESS 'APP2' /* Will route commands to APP2 */
ADDRESS /* Will toggle to APP1 */
ADDRESS /* Will toggle to APP2 */

/* This will route external commands to the */
/* Finder. */
ADDRESS Finder;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
DO

DO [repetitor] ;
[instruction(s)]

END ;

Where:

repetitor is one of the following:

name = expri [TO exprt] [BY exprb] [FOR exprf]
FOREVER
exprr

DO is used to group statements together and optionally repeat them a specified
number of times. For repetitive execution, a control variable may be stepped
through a range of values by a specified step value. DO loops are very powerful and

very flexible. The following syntax rules apply to DO loops:

1) exprr, expri, exprb, exprt and exprf, if any are present, may be any
expression that evaluates to a number.

2) exprr and exprf must evaluate to positive integer (whole number) numbers.

3) exprb defaults to 1, if relevant.

4) If TO, BY, and FOR are used, they may be in any order.

DO Loop Components

A DO loop or DO group may contain some or none of the above listed
components. A DO without any of the above components, is called a simple

DO group. It is called a group instead of a loop because the instruction does not
repeat. It is used strictly for grouping instructions. These grouped instructions are
treated as one. The repetitor is considered to be 1.

Simple repetitive loops contain the FOREVER keyword or an expression,
exprr. FOREVER repeats the loop indefinitely, i.e. forever. The only

way to exit the loop is to use the Texx instruction LEAVE. Care must be
exercised to make sure that the LEAVE is executed to exit the loop. The other

form of a simple repetitive loop is with the use of an expression, exprr. The
expression, exprr, must evaluate to a positive integer number. Exprr is decremented
by 1 each time through the loop until it reaches the value of zero, at which time the loop
is exited.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
Controlled repetitive loops use the other DO loop constructs, FOR, BY,

and TO. The controlled form uses a control variable to control the
execution of the loop. When name = epri is present, name is the control
variable. The value of the control variable determines whether the loop will be

executed or exited. The control variable may be altered within the loop or by the
other loop constructs.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
The limits of the control variable are set by the FOR, BY, and TO

loop constructs. The TO expression, exprt, sets the upper bounds of the loop.
The loop will execute until the control variable reaches the exprt value. The control
variable is further bounded by the FOR construct. The FOR expression, exprf, must
evaluate to a positive number. The exprf value acts as a loop counter, it is
decremented each through the loop. If the exprf value reaches zero before the other
limits of the loop are reached, the loop will be terminated. In other words, whichever
loop limit is reached first will terminate the loop. The BY expression, exprb, sets the
increment value of the loop limits, i.e. the increment value of the expri expression.

The default value is one (1).

The loop limits are tested at the beginning of each loop. Therefore, it is
possible that the loop will never get executed. The TO, BY, and FOR
expressions are evaluated only once, when the DO instruction is first
executed and before the control variable is assigned its initial value.

Return Codes:

none.

Examples:

/* The instructions between DO and END will */
/* be executed if a = 3. */
IF a = 3 THEN DO

a = a + 1;
say "A = " || a;

 END;
/* This displays "Hello" three times */
DO 3
 say 'Hello';
END;
/* This loop will be executed forever */
DO FOREVER
 say 'This is executing forever';
END;
/* This will display 1, 0, -1 */
DO I = 1 TO -1 BY -1
 say I;
END;
/* This will display 1, 2, 3 */
DO I = 1 TO 10 BY 1 FOR 3
 say I;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
END;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
DROP

DROP name [name] [name] ...;

Where:

Name is a variable separated from others by one or more blanks.

DROP is used to unassign values to variables. Variables will be set to their
original unassigned value. Each variable specified will be dropped from left to right.

It is not an error to list variables more than once.

NOTE: One or more blanks separate the variable names if more than one is listed.
 Most programming languages would use commas (,). However, the

 Texx language uses spaces instead of commas. This applies to the entire
 Texx language.

Return Codes:

None.

Example:

/* This will drop the value of a and b */
a = 1;
b = 'This is b';
DROP a b;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
GOTO

GOTO labelname ;

Where:

labelname is a constant symbol that names a label defined elsewhere in the
exec.

The GOTO causes a change in the flow of control. Control passes to the instruction
immediately following the label referenced. The label must match the labelname less the
colon that follows a label definition. Case is not important since Texx converts everything to
uppercase. In this implementation of Texx, GOTO and SIGNAL are identical. Please note that
the label does not cause any special processing for the statement that follows. The label is there
only to be used by the GOTO and SIGNAL statements.

Return Codes:

none.

Example:

/* This will jump to label "TEXXLABEL" */
GOTO TexxLabel;

Other Instructions;
TEXXLABEL: Say 'Hi';

/* This will jump backwards in the exec */
TEXXLABEL: Say 'Hi';

Other Instructions;
GOTO TexxLabel;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
EXIT

EXIT;

The EXIT is used to unconditionally leave a Texx exec. The exec is terminated
immediately and control is returned to the Texx application for further use.

Return Codes:

none.

Example:

/* This will terminate before any message is printed */
x = 'this is a message';
EXIT;
SAY x;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
IF

IF expression [;] THEN [;] instruction
 [ELSE [;] instruction]

The IF statement is used to conditionally execute an instruction or group of
instructions depending on the evaluation of the expression.

The instruction after the THEN is executed only if the result of the expression is 1.
If an ELSE is present, the instruction after it is executed only if the result of the
expression is 0. An instruction could be multiple instructions as grouped by a DO
statement. Instructions are treated as one, even if multiple instructions are grouped
together. If an ELSE is present, it binds to the nearest IF at the same level.

Return Codes:

none.

Examples:

/* This will display "X is greater than 1" */
x = 2;
IF x > 1 THEN SAY 'X is greater than 1';
/* This will display 'X is equal to 2' */
x = 2;
IF x <> 2 THEN SAY 'X is not equal to 2';

ELSE SAY 'X is equal to 2';
/* This will do nothing */
x = 2;
IF x <> 2 THEN

DO 5
x = x + 1;
SAY x;

END;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
LEAVE

LEAVE ;

The LEAVE causes immediate exit and termination of DO loops and DO groups.
Execution of the grouped instructions is terminated and control is passed to the
instruction immediately following the END statement. On exit, the control
variable (if any), will retain the value it had when the LEAVE statement was
encountered. The LEAVE statement will terminate the innermost loop or group.

The LEAVE is only useful inside a DO loop or group. An error is not generated if
called outside of a loop or group. In this case, the instruction has no effect.

Return Codes:

none.

Example:

/* This will execute the loop only twice */
DO i = 1 TO 5

IF i > 2 THEN LEAVE;
END;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
NOP

NOP ;

The NOP statement is a dummy instruction that has no effect. It can be useful as a
target of an THEN or ELSE clause.

Return Codes:

none.

Example:

/* This IF statement has no THEN clause, use NOP */
IF x = 2 THEN NOP;

 ELSE x = x + 1;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
PATH

PATH [pathname];

Where pathname is a single symbol or string, which is treated as a constant.

This instruction is used to set a path for filename specifications. Using a PATH prior to
specifying a filename will eliminate the need for the filename to contain the full path
name. Instead, only the filename will be necessary. The PATH specification will remain in
effect until another PATH instruction is executed.

The pathname supplied is checked for several things. First, it is checked for valid
file name characters. Next, the first section of the pathname, before the first ':', is
checked for a length of 28. Thereafter, the sections are checked for a length of 31.
If either of these tests fail, the PATH instruction is invalid. An error message will
be posted and the exec will terminate.

If the PATH instruction is supplied without a pathname, the current setting will be
swapped with the previous setting. It may be used to toggle between two different
pathnames. If not previous PATH had been executed, the instruction is considered
invalid. An error message is posted and the exec is terminated.

Return Codes:

none.

Examples:

/* This will set the path to the Preferences folder */
PATH 'External HD:System Folder:Preferences';

/* This will do the same as above */
PathName = 'External HD:System Folder:Preferences';
PATH PathName;

/* If the current pathname is 'External HD' */
/* And the previous pathname was 'Internal HD' */
/* The following will set the current pathname to */
/* 'Internal HD' */

PATH; /* this will toggle to previous setting */

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
SAY

SAY [expression] ;

SAY is used to display the result of the expression to the user. The result of the
expression may be any length up to 254 characters or any type. The output of this
command is displayed in the Texx System Window. It will be necessary to select the

Texx System Window from the Window Menu to bring the system window to the front.

Return Codes:

none.

Examples:

/* This will display the number 10 */
SAY 10;
/* This will display 'This is a string' */
SAY 'This is a string';
/* This will display 'This is a string' */
String = 'This is a string';
SAY String;
/* This will display the value of 5 * 2 */
SAY 5 * 2;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
SIGNAL

SIGNAL labelname ;

Where:

labelname is a constant symbol that names a label defined elsewhere in the
exec.

The SIGNAL causes a change in the flow of control. Control passes to the
instruction immediately following the label referenced. The label must match the
labelname less the colon that follows a label definition. Case is not important since
Texx converts everything to uppercase. In this implementation of Texx, GOTO and

SIGNAL are identical.

Return Codes:

none.

Example:

/* This will jump to label "TEXXLABEL" */
SIGNAL TexxLabel;

Other Instructions;
TEXXLABEL: Say 'Hi';

/* This will branch backwards */
TEXXLABEL: Say 'Hi';

Other Instructions;
SIGNAL TexxLabel;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

This page intentionally left blank

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Chapter 3
External Commands

Introduction to External Commands

External commands are what makes Texx so appealing and powerful. The ability to pass a
command to another application to carry out a task is the main function of Texx. This ability
allows you to automate repetitive tasks quickly, efficiently and without errors. It also allows you
to define the desktop or application environment anyway you want. Texx is also the perfect
compliment to other applications that take advantage of the IAC capabilities of System 7.

External commands are English-like commands that are translated into Apple Events as defined
in the Apple Event Registry, version 1.0. The Apple Event Registry is divided into several
"suites". These "suites" include the four required Apple Events as defined in Inside Macintosh
VI, Finder only events, Core events, Text events, Quickdraw events, Table events, and
Miscellaneous events. This version of Texx, 0.1, only supports the four required events and the
Finder events. Future versions will support the other events. Under consideration is the ability
to support other custom Apple Events defined by users and developers that are not defined by the
Apple Event Registry. For more information on Apple Events consult Inside Macintosh VI and
the Apple Event Registry, both are available from APDA.

As stated previously, Texx makes extensive use of Interapplication communication (IAC). This
capability is only available with System 7. Also, the bits in the SIZE resource that indicate that
the application supports high-level events must be set. For more information, consult Inside
Macintosh VI. Applications that support high-level events should not only state that in the
documentation, but also list the high-level events supported.

Description of External Commands

Texx external commands are one or two word commands followed by zero or more parameters.
Some external commands have no parameters, while others have up to three different parameters.
These parameters may consist of file names, path names, vertical and horizontal positions,
window types, and other miscellaneous parameters. The parameters are separated from the
command and from each other by one or more spaces. Previously assigned variables or quoted
strings will be accepted as parameters. Texx will interpret the supplied parameters and assemble
the Apple Event and send it to the desired application. Upon completion of the Apple Event,
control returns to the exec for further instructions.

The external commands as accepted by Texx are simple and very straightforward. However, the
implementation is far from simple. Depending on the command and the number of parameters
required, there may be a significant number of steps required to implement the command. An
error could occur at any of those steps. Return codes will provide information on whether the
command was successful or not. There are three different possible return codes. One is returned
by the Texx routines that are called to interpret and assemble the Apple Event. This return code
indicates the reason that a step failed. These errors are documented in the Appendix. These
return codes are meant to be short but descriptive and also contain errors discovered by the

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
parsing routines. These return codes are returned in the pre-declared variable RC. RC is
discussed in chapter 1. The second type of return code is generated by the Apple Event routines
called to assemble the Apple Event. These routines and their result codes are documented in the
Apple Event

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
chapter of Inside Macintosh VI. The AERC pre-declared variable will have the return codes
from this second type of Apple Event errors. AERC will also contain the return code from the
application that received the Apple Event from the Texx exec. The third return code is one
returned from the target application. It is a descriptive string message that may or may not be
returned by the target application. That message, if returned can be accessed by the pre-declared
variable AERCSTRING.

When an external command is executed, the return codes mentioned above should be checked.
The formal description of the language does not include the AERC or AERCSTRING return
code. It was implemented in Texx due to the way IAC is implemented by Apple. Because of the
IAC implementation, RC and AERC codes should be checked to ensure that the command was
successfully executed. AERCSTRING is optional and is used to give a written error message as
opposed to an error number. The three error codes were implemented in Texx because of the
complexity of IAC and because the additional information will aid in debugging. RC should be
checked first. An error may occur before any of the Apple Event routines are called. These
errors will be returned in RC. If RC contains a non-zero value, the external command failed. It
is possible that RC returns an error but AERC does not. That is because the parsing routines
may have recognized an error before any Apple Event routines were called. It is also possible
that RC may be zero and AERC may be non-zero. If RC returns an error, the Apple Event
failed and AERC may or may not contain additional information. If RC returns a zero, then
AERC needs to be checked, if it contains a zero, then the external command was successfully
executed, if not, check the error in Inside Macintosh VI or in the target application's
documentation. AERCSTRING may be checked, but since it is optional, it is possible that even
though an error occurred, it may still be blank. RC and AERC are reliable and should always be
checked after an external command is executed.

NOTE: Apple Events belonging to the Finder suite cannot be used for other applications.
Also, events used for other applications should not be sent to the Finder. The Apple Events
Registry states that the Finder suite was developed before the Apple Event Manager was,
obviously the Apple Event Manager was changed during its development.

About Finder Events

Apple feels that the Finder is not meant to be scriptable, in fact, Apple does not support the
Finder events listed later in this manual. The Finder doesn't even use the Apple Event Manager
routines to process Apple Events. I totally disagree, the Finder is the ideal scriptable application.
It is my feeling that any operation that can be done with a keyboard and mouse should be
available to a scriptable application, even responding to dialog boxes. While the Finder events
that are currently supported useful, there are many more Finder operations that should be
supported. Events giving information such as open finder windows, window locations, and icon
locations are just some of the Finder events that would greatly enhance the Finder's useability.
Apple intends to change the Finder events to conform to the Core events, hopefully, they will.

Because of the lack of support, the Finder presents some possible problems for the Texx
application. If a Finder event is passed to the Finder that is incorrect, i.e. a file or folder does not
exist, the Finder does not return an error or acknowledgement. Therefore, Texx is not aware that
the command did not work. Texx will just sit there waiting until it times out. If Texx is brought

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
to the foreground, the EXEC menu is highlighted and Texx looks like it died. Be patient, Texx is
waiting for a response from the Finder or a timeout, whichever comes first. RC and AERC will
reflect that a timeout occurred.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

External Commands

There are several parameters that are used by many of the external commands. They
are listed and described below.

Pathname :

The pathname is either a file name, a folder name or a window name. The
name specified must be a full pathname, i.e. the entire hierarchial path must
be specified. Partial pathnames may only be specified if a PATH

instruction had been previously executed. Window specifications are also
considered to be pathnames because an open Finder window is simply an open

folder.

Pathname List :

Some external commands take a list of pathnames as a parameter. The
pathnames are the same as above, the only difference is that a list of names
is required. The list may consist of one or more pathnames.

Vertical Position, Horizontal Position :

These are two integer values that specify the top and left offsets of the
content region for the placement of objects such as icons. These offsets apply

to the destination location.

Window Type :

There are three types of window types. The window type is normally
specified with a pathname. The window types and keywords are as
follows:

MAINWINDOW - This is a normal Finder window. An example would
be an open folder window.

INFOWINDOW - This a window from a Get Info selection from the File
Menu of the Finder.

SHARINGWINDOW - This is a window from a Sharing selection from
the File Menu of the Finder.

View Type :

There are nine view types that may be used. These are the same as could be
selected from the Finder's View menu. The keywords are self explanatory

and are as follows :

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
BYCOMMENT
BYDATE
BYICON
BYKIND
BYLABEL
BYNAME

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
BYSIZE
BYSMALLICON
BY VERSION

Height, Width :

These are two integer values that represent the size of a window. These
values are in pixels. These values are used to size a window.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

FINDER SUITE

ABOUT

ABOUT ;

Event Suite : Finder

This external command asks the Finder to display the About This Macintosh
window. This command has the same effect as selecting About This Macintosh from

the Apple Menu of the Finder. It is up to the user or another external command to close this
window. Although this command is included with the Finder events, it is a core event and
may be sent to other applications that support it.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Example:

/* This will display the About This Macintosh */
Address 'Finder';
About;

/* This will instruct TEXX to display its About */
Address Texx;
About;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
CLOSE WINDOW

CLOSE WINDOW pathname windowtype ;

Event Suite : Finder

This command asks the Finder to close one of its windows. This command accepts
only a single pathname and the window type must be supplied.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This will close the Texx Folder */
PATH 'External HD:';
ADDRESS 'Finder';
CLOSE WINDOW 'Texx Folder' MAINWINDOW;

/* This will close the disk window */
ADDRESS 'Finder';
CLOSE WINDOW 'External HD' MAINWINDOW;

/* This will close the HyperCard Folder */
ADDRESS Finder;
HyperCardPath = 'External HD:Applications Folder';
HyperCardFolder = 'HyperCard Folder';
PATH HyperCardPath;
CLOSE WINDOW HyperCardFolder MAINWINDOW;

/* this will close an info window opened by a */
/* get info on a file */
Address finder;
Path 'Internal HD:Test Folder';
CLOSE WINDOW 'Sample File' INFOWINDOW;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
DRAG SELECTION

DRAG SELECTION pathname list vertical position horizontal position
destination pathname ;

Event Suite : Finder

This external command asks the Finder to move copies of one or more icons in the
same folder to a new folder. Please note that the icons selected must be in the same
folder and that the destination folder must be the same for all selected icons. Also
note that the icons are copied, the originals stay intact in their original place. There
is a move command, described later, to move the originals without coping them. This is

the same as selecting icons and dragging them to a destination with the mouse.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will move the file 'Test File' to */
/* vertical location 100, horizontal location 100 */
/* in folder 'Test Folder' */
ADDRESS finder;
PATH 'External HD:Utilities Folder'; /* loc of file */
DRAG SELECTION 'Test File' 100 100 'Test Folder';

/* This will move 3 files to 'Test Folder' */
ADDRESS 'Finder';
PATH 'External HD:Utilities Folder';
DRAG SELECTION file1 file2 file3 100 100 'Test Folder';

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
DUPLICATE SELECTION

DUPLICATE SELECTION pathname list ;

Event Suite : Finder

This external command instructs the Finder to duplicate one or more icons in the same
folder. This is the same as selecting one or more icons and selecting DUPLICATE from
the Finder's File menu.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This will duplicate the file 'test file' */
ADDRESS finder;
PATH 'Internal HD:Test Folder';
DUPLICATE SELECTION 'test file';

/* This will duplicate 3 files */
ADDRESS finder;
PATH 'Internal HD:Test Folder';
DUPLICATE SELECTION file1 file2 file3;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
EMPTY TRASH

EMPTY TRASH ;

Event Suite : Finder

The EMPTY TRASH external command asks the Finder to empty the trash can. This
command has the same effect as selecting Empty Trash from the Finder's Special Menu and
selecting OK in the dialog box that appears. Use of this command bypasses the verification
dialog box that may appear.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Example:

/* This will empty the trash */
ADDRESS 'Finder';
EMPTY TRASH;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
GET INFO

GET INFO pathname list ;

Event Suite : Finder

This command instructs the Finder to display Info windows for one or more icons in the
same folder. This command creates the INFOWINDOW window type used by other
commands.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This will display the get info window for the file */
/* 'Test file' */
ADDRESS finder;
PATH 'External HD:HyperCard Folder';
GET INFO 'Test file';

/* This will display the get info windows for 3 files */
ADDRESS finder;
PATH 'External HD:HyperCard Folder';
GET INFO 'file 1' file2 'file 3';

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
MAKE ALIAS

MAKE ALIAS pathname list ;

Event Suite : Finder

This command instructs the Finder to create aliases for one or more icons in the same
folder. This command has the same effect as selecting one or more icons in the same
folder and choosing Make Alias from the Finder's File Menu.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will make an alias for the file */
/* 'Archive file' */
ADDRESS finder;
MAKE ALIAS 'Internal HD 40:Archive file';

/* This example will make alias for 3 files */
ADDRESS finder;
PATH 'Internal HD 40';
MAKE ALIAS file1 'file 2' file3;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
MOVE SELECTION

MOVE SELECTION pathname list vertical position horizontal position
destination pathname ;

Event Suite : Finder

This external command asks the Finder to move one or more icons to a new folder.
This is the same as selecting one or more icons and dragging them to a new folder.
Please note that if the icons are moved to a folder on another disk drive, the
originals stay intact and copies are placed in the new folder.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will move a file to another folder */
/* at the specified locations */
ADDRESS finder;
PATH 'External HD:HyperCard Folder';
MOVE SELECTION 'Texx Stack' 10 10

'External HD:Texx Folder';

/* This example will move 3 files to another folder */
/* at the specified locations */
ADDRESS finder;
PATH 'External HD:HyperCard Folder';
MOVE SELECTION 'stack 1' stack2 'stack3' 10 10

'Internal HD:Misc Folder';

/* This is an example of throwing a file in the trash */
Address finder;
Path 'External HD';
MOVE SELECTION 'Appl Folder:Temporary File' 0 0

Trash;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
MOVE WINDOW

MOVE WINDOW pathname window type vertical position
horizontal position

Event Suite : Finder

This command will ask the Finder to move a window to the specified location. This
command is the same as moving the mouse to a window title bar, pressing the mouse and
dragging it to a new position.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This will move the window to vertical */
/* position 40 and horizontal position 10 */
Address finder;
MOVE WINDOW 'External HD' MAINWINDOW 40 10;

/* This will move the window to a new location */
Address finder;
VerticalPosition = 50;
HorizontalPosition = 20;
MOVE WINDOW 'External HD' MAINWINDOW

 VerticalPosition HorizontalPosition;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
OPEN SELECTION

OPEN SELECTION pathname list ;

Event Suite : Finder

This command will ask the Finder to open one or more icons in the same folder. This
command is used to launch other applications. Please note that the Finder will launch the
application and not Texx. Also note that this command will work with applications that do
not support Apple Events. The reason being is that the Finder checks the application's SIZE
resource and if it supports Apple Events, the Finder will use Apple Events. If the application
does not support Apple Events, the Finder will use the old pre-System 7 method of launching
and passing files to open.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will startup HyperCard */
ADDRESS finder;
PATH 'External HD:HyperCard Folder';
OPEN SELECTION 'Home Stack';

/* This example will startup a word processor */
/* and open 3 files */
ADDRESS finder;
PATH 'Internal HD:Word Processing Folder';
OPEN SELECTION 'Doc 1' 'Doc 2' Doc3;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
PAGE SETUP

PAGE SETUP pathname window type;

Event Suite : Finder

This command asks the Finder to display the Page Setup window for a specified Finder
window. It is up to the user to change page setup options and to close the Page Setup window.
There are no Apple Events that allow the change of page setup options or to close the Page
Setup window.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This will display the page setup for the disk */
Address finder;
PAGE SETUP 'External HD' MAINWINDOW;

/* This will display the page setup for a folder */
Address finder;
Path 'External HD:Applications Folder';
PAGE SETUP 'SpreadSheet Folder' MAINWINDOW;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
PRINT SELECTION

PRINT SELECTION pathname list ;

Event Suite : Finder

This command asks the Finder to print the specified documents. The Finder does not
display any dialog boxes to handle this command. However, the application that prints the
document may display dialog boxes. It is up to the user to respond to any dialog boxes
displayed. If the application involved in printing a document is already active, it simply
prints the document and remains active. If the application is not active, the Finder will launch
it. After printing the document, the Finder will send a Quit Application event to the
application.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will instruct the word processor */
/* to print the file 'Document 1' */
ADDRESS finder;
PATH 'External HD:Word Processing Folder';
PRINT SELECTION 'Document 1';

/* This example will instruct an application to */
/* print 3 files */
ADDRESS finder;
PATH 'External HD:Misc documents folder';
PRINT SELECTION 'Document 1' document2 document3;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
PRINT WINDOW

PRINT WINDOW pathname window type ;

Event Suite : Finder

This command asks the Finder to print the contents of one of its windows. When
executed, the Finder displays a Print dialog box. It is up to the user to respond and
close this dialog box. There are no Apple Events that allow response to these dialog

boxes.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This will print the disk window */
Address finder;
PRINT WINDOW 'External HD' MAINWINDOW;

/* This will print a folder window */
Address finder;
Path 'External HD';
PRINT WINDOW 'Applications Folder' MAINWINDOW;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
PUT AWAY

PUT AWAY pathname list ;

Event Suite : Finder

This external command asks the Finder to put one or more icons on the desktop or
in the Trash back into the folders from which they were last moved. This is the same

as selecting one or more icons, either on the desktop or in the Trash, and choosing Put Away
from the File Menu of the Finder.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will return the file 'test file' */
/* back to its previous folder */
ADDRESS finder;
PATH 'External HD:Misc Documents Folder';
PUT AWAY 'test file';

/* This example will retrieve the file 'test file' */
/* from the trash and return it to its previous */
/* location */
ADDRESS finder;
PATH 'Internal HD:Trash';
PUT AWAY 'test file';

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
RESIZE WINDOW

RESIZE WINDOW pathname window type height width ;

Event Suite : Finder

This command asks the Finder to set the size of a Finder window. This is the same
as dragging the window's size box (lower right corner of the window). The upper

right corner of the window does not move.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will resize a window to a height */
/* 200 pixels and a width of 300 pixels */
Address Finder;
Path 'External HD';
RESIZE WINDOW 'Appl Folder' MAINWINDOW 200 300;

/* This example will resize the specified window */
Address finder;
Height = 500;
Width = 400;
Path 'External HD';
RESIZE WINDOW 'Word Processing Folder' MAINWINDOW

Height Width;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
RESTART

RESTART ;

Event Suite : Finder

This command asks the Finder to terminate all open applications and restart the
computer. This has the same effect as selecting Restart form the Finder's Special Menu.

Please note that terminating other applications may cause them to display dialog boxes that
require user intervention. The user is responsible for responding to and closing all dialog
boxes that are displayed.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Example:

/* This example will restart the macintosh */
ADDRESS FINDER;
RESTART;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
REVEAL

REVEAL pathname list ;

Event Suite : Finder

This command asks the Finder to display the window for the folder that contains the
specified icons and select those icons.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will display the folder containing */
/* the application HyperCard */
ADDRESS finder;
PATH 'External HD:HyperCard Folder';
REVEAL HyperCard;

/* This example will display the folder containing */
/* the file 'test file' */
ADDRESS finder;
PATH 'External HD:Misc Documents Folder';
REVEAL 'test file';

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
SET VIEW

SET VIEW pathname window type view type ;

Event Suite : Finder

This command specifies what view of a folder window's contents the Finder should
display. These views are what may be selected form the Finder's View Menu.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will set the view of the given */
/* window to BY NAME */
Address Finder;
Path 'External HD';
SET VIEW 'Sample Folder' MAINWINDOW BYNAME;

/* This example will set the view of the given */
/* window to BY SMALL ICON */
Address finder;
SET VIEW 'Externah HD' MAINWINDOW BYSMALLICON;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
SHARING

SHARING pathname list ;

Event Suite : Finder

This command asks the Finder to display Sharing windows for one or more icons in the
same folder. This has the same effect as selecting one or more icons and choosing Sharing
from the File menu of the Finder. Please note the it is up to the user to change sharing
settings. The window may be closed with the CLOSE WINDOW external command.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will display the sharing window */
/* for the folder 'HyperCard Stacks folder' */
ADDRESS finder;
PATH 'External HD:HyperCard Folder';
SHARING 'HyperCard Stacks folder';

/* This example will display the sharing windows */
/* the given folder names */
Address finder;
Path 'External HD:Companies Folder';
SHARING 'Company 1 Folder' 'Company 2 Folder'

'Company 3 Folder';

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
SHOW CLIPBOARD

SHOW CLIPBOARD ;

Event Suite : Finder

This external command instructs the Finder to display the Clipboard window. It is
up to the user to close the Clipboard window.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Example:

/* This example will instruct the finder to open */
/* the clipboard */
ADDRESS finder;
SHOW CLIPBOARD;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
SHUTDOWN

SHUTDOWN ;

Event Suite : Finder

This command instructs the Finder to terminate all open applications in preparation
for turning off the power. This is the same as selecting Shut Down from the
Finder's Special Menu. Please note that applications that terminate may display dialog

boxes requiring user intervention. It is up to the user to respond and close those windows.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Example:

/* This example will instruct the finder to shutdown */
ADDRESS finder;
SHUTDOWN;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
SLEEP

SLEEP ;

Event Suite : Finder

This command puts a portable Macintosh or PowerBook in power conserving state
also known as system sleep. This command has no effect on non-portable Macintosh

machines. This has the same effect as choosing Sleep from the Special Menu of the Finder.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Example:

/* This command will instruct the finder to put the */
/* Macintosh into 'sleep' mode */
ADDRESS finder;
SLEEP;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
ZOOM WINDOW

ZOOM WINDOW pathname window type IN | OUT ;

Event Suite : Finder

This command will either Zoom in or Zoom out a specified window. Under System
7, the largest window is the smallest window that displays the entire contents of the
window. A Zoom out command may actually make the window smaller.

Return Codes:

RC - See the Appendix in this manual.

AERC- See Inside Macintosh Volume VI.

Examples:

/* This example will zoom in a given window */
Address finder;
ZOOM WINDOW 'External HD' MAINWINDOW IN;

/* This example will zoom out a given window */
Address finder;
ZOOM WINDOW 'External HD' MAINWINDOW OUT;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

REQUIRED SUITE

OPEN APPLICATION

OPEN APPLICATION ;

Event Suite : Required

This command instructs an application to perform any tasks that it would when it first
starts up. In other words, perform it initialization code. The Apple Events Registry
strongly recommends against using this command. Use it with care.

Return Codes:

-10000 - The Apple Event handler faild when attempting to handle the Apple
Event.

-10011 - Could not handle this Apple Event because it is not part of the
current transaction.

-10012 - The specified transaction is not a valid transaction; the transaction
may never have begun, or it may have been terminated.

-10016 - The server application only handles this Apple Event when it is sent
from an application running on the same computer.

Other Result Codes -Other result codes may be produced that may have
caused the Apple Event to fail. One example would be the Memory
Manager. The server application handler may also return other return

codes.

Example:

/* This example will instruct the targeted */
/* application to perform actions required */
/* when starting up */
ADDRESS texx;
OPEN APPLICATION;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
OPEN DOCUMENTS

OPEN DOCUMENTS pathname list ;

Event Suite : Required

This external command instructs the application to open the supplied document(s).
This is like choosing Open from the application's File Menu. The only difference being

that you may send a list of documents instead of one at a time.

Return Codes:

-10000 - The Apple Event handler faild when attempting to handle the Apple
Event.

-10011 - Could not handle this Apple Event because it is not part of the
current transaction.

-10012 - The specified transaction is not a valid transaction; the transaction
may never have begun, or it may have been terminated.

-10016 - The server application only handles this Apple Event when it is sent
from an application running on the same computer.

Other Result Codes -Other result codes may be produced that may have
caused the Apple Event to fail. One example would be the Memory
Manager. The server application handler may also return other return

codes.

Examples:

/* This example will instruct the targeted */
/* application to open a file */
ADDRESS texx;
PATH 'Hard Disk:System Folder:Preferences';
OPEN DOCUMENTS 'Profile.exec';

/* This example will instruct the targeted */
/* application to open 2 files */
ADDRESS texx;
PATH 'Hard Disk:System Folder:Preferences';
OPEN DOCUMENTS Profile.exec Shutdown.exec;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
PRINT DOCUMENTS

PRINT DOCUMENTS pathname list ;

Event Suite : Required

This external command instructs the application to print the supplied document(s).
This is like choosing Print from the application's File Menu. The only difference being

that you may send a list of documents instead of one at a time.

Return Codes:

-10000 - The Apple Event handler faild when attempting to handle the Apple
Event.

-10011 - Could not handle this Apple Event because it is not part of the
current transaction.

-10012 - The specified transaction is not a valid transaction; the transaction
may never have begun, or it may have been terminated.

-10016 - The server application only handles this Apple Event when it is sent
from an application running on the same computer.

Other Result Codes -Other result codes may be produced that may have
caused the Apple Event to fail. One example would be the Memory
Manager. The server application handler may also return other return

codes.

Examples:

/* This example will instruct the targeted */
/* application to print a file */
ADDRESS 'Navigator 3.1.1';
PATH 'Hard Disk:Navigator Folder';
PRINT DOCUMENTS 'Log File';

/* This example will instruct the targeted */
/* application to print 2 files */
ADDRESS 'MPW Shell';
PRINT DOCUMENTS 'Source File 1' 'Source File 2';

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
QUIT APPLICATION

QUIT APPLICATION ;

Event Suite : Required

This command instructs an application to terminate. This is the same as choosing Quit
from the application's File Menu. This command may cause the application to display dialog
boxes requiring user intervention. It is up to the user to respond and close the dialog
windows.

Return Codes:

-10000 - The Apple Event handler faild when attempting to handle the Apple
Event.

-10011 - Could not handle this Apple Event because it is not part of the
current transaction.

-10012 - The specified transaction is not a valid transaction; the transaction
may never have begun, or it may have been terminated.

-10016 - The server application only handles this Apple Event when it is sent
from an application running on the same computer.

Other Result Codes -Other result codes may be produced that may have
caused the Apple Event to fail. One example would be the Memory
Manager. The server application handler may also return other return

codes.

Examples:

/* This example will instruct the targeted */
/* application to 'QUIT' */
ADDRESS Texx;
QUIT APPLICATION;

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Miscellaneous Standards

DO SCRIPT

DO SCRIPT Pathname;

Event Suite : Micellaneous Standards

This command instructs an application to execute the given script. Pathname
contains the name of the script. During the execution of this script, the targeted
application may require user response. Depending on how the targeted application
handles the DO SCRIPT command, the user may be required to manually respond
to any requests by the application.

Return Codes:

-10000 - The Apple Event handler faild when attempting to handle the Apple
Event.

-10011 - Could not handle this Apple Event because it is not part of the
current transaction.

-10012 - The specified transaction is not a valid transaction; the transaction
may never have begun, or it may have been terminated.

-10016 - The server application only handles this Apple Event when it is sent
from an application running on the same computer.

Other Result Codes -Other result codes may be produced that may have
caused the Apple Event to fail. One example would be the Memory
Manager. The server application handler may also return other return

codes.

Example:

/* This example will instruct the application execute */
/* the script 'DoMyWork' */
ADDRESS 'application name';
DO SCRIPT DoMyWork;

Notes:

The scripts passed to the targeted application are not Texx execs, unless the targeted
application is Texx. The difference between the DO SCRIPT and the OPEN
DOCUMENTS command is that the DO SCRIPT opens and executes the
supplied file name. The OPEN DOCUMENTS command only opens the supplied file

name.
Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Because of the automatic execution of execs feature of Texx, the DO SCRIPT and
OPEN DOCUMENTS commands have the same effect. Either command will cause

Texx to open and execute the supplied file name.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Chapter 4
Getting Started

Installation Requirements

Texx requires the Interapplication Communication capabilities of System 7. Texx will not
operate on anything less than System 7. If an attempt is made to run Texx under an operating
system less than System 7, Texx will post an error message and quit. The System 7 requirement
also means a requirement of at least 2 megabytes of memory. However, a more useable figure is
more like four or five megabytes of memory. Keep in mind that when Texx is communicating
with another application, they must both be active. With today's growing applications, the
memory needed is greater. Depending on the type of application that is running, five megabytes
might not be enough for one application. Of course, virtual memory would ease the memory
requirements.

Operating Modes

Texx has several operational features that may or may not be used, that is up to the user. There
are two basic ways of running Texx, both have advantages and disadvantages. The preferred
way is to place Texx, or an alias of Texx, in the Startup Items folder which is located in the
System Folder. Doing this will startup Texx every time the Macintosh is started or restarted.
Texx will just sit running in background until it has some work to do. At which time it may
switch to the front and process an exec. The advantage to this method of operation is that it is
always available when needed. The disadvantage is that it occupies memory, might be a problem
on Macs with limited memory.

Another way to run Texx is to start it up manually when needed and shut it down when done.
The advantage to this method is that the memory Texx uses is not occupied and therefore free for
other applications. The disadvantage is that it is more time consuming and more cumbersome to
use. While there is nothing wrong with running Texx this way, it is certainly not the preferred
way.

Special Features

There are several features of Texx that might help is deciding which method of operation to use.
When Texx starts up, it looks for an exec named "Profile.exec" in the Preferences folder located
in the System Folder. If found, Texx will load and automatically execute it. The "Profile.exec"
may be used to set up the user environment, i.e. startup other applications, pass commands to the
Finder, and setup the Texx environment. If the exec is not found, Texx simply ignores it and
continues with its operation. Upon shutdown, Texx looks for an exec named "Shutdown.exec".
It will look for it in the Preferences folder located in the System Folder. If found, Texx will load
and automatically execute it. The "Shutdown.exec" can be used for passing commands to other
applications, and passing commands to the Finder. With System 7, one of the more useful
commands to pass to the Finder is "Empty Trash". As with the "Profile.exec", if
"Shutdown.exec" is not found, Texx simply ignores it and quits.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Texx is setup to do as much as possible automatically. If an icon for a Texx exec is double
clicked, Texx assumes that the user meant to execute the exec. Texx will load and execute the
exec. If Texx receives an OPEN DOCUMENTS apple event from another application, Texx will
load and execute it. This is different from other Macintosh applications. If an

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
icon representing an application document is double clicked, the application simply opens the
document and displays it. Texx is different, Texx will not only open the document, but also
execute it. To open an exec without executing, select Open from the File menu.

One of the most useful features of Texx is the AddExecMenu command. What this command
does is add existing execs to the Exec menu. These execs may reside on any mounted disk and
may contain any valid Texx commands. Once placed in the Exec menu, the user can execute the
exec by selecting it from the menu. Upon selecting an exec from the Exec menu, Texx loads and
executes it automatically. The best place to use this command is in the "Profile.exec" that is
executed at startup. Using an exec to startup applications has several advantages. First, an exec
is a more flexible way of initiating an application, it allows you to open multiple documents
without performing finger gymnastics. It allows you to pass commands to the application in
addition to just opening documents. It far exceeds the capabilities of the Apple Menu. And,
possibly the most helpful advantage, eliminating the need for aliases. Texx will work with
aliases, but Texx renders aliases unnecessary. The only need for aliases are those that
applications may require.

Installing Texx

Prepare for Installing Texx

1. Decide which method of operation is desired, automatic startup or manual
startup.

2. Locate the file named Texx.sea.

3. Move the Texx.sea icon to the desired install location.

4. Double click the Texx.sea icon to expand the Texx Folder.

5. If installing Texx for manual operation, skip the section Installing for
Automatic Startup.

Installing Texx for Automatic Startup

1. Locate the icon for the Texx application in the Texx Folder.

2. Locate the Startup Items folder in your System Folder.

3. Drag the Texx icon into the Startup Items folder. You may create an alias
for the Texx icon and drag the alias into the Startup Items folder.

4. Locate the files "Profile.exec" and "Shutdown.exec" in the Texx Install
Folder.

5. Locate the Preferences folder in your System Folder.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
6. Drag the icons for the "Profile.exec" and "Shutdown.exec" files into the
Preferences folder. You may create an alias for both files and drag the aliases

into the Preferences folder.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
7. Restart your Macintosh. On restart, Texx will startup and execute the
"Profile.exec".

8. Texx is now ready for further work.

9. Skip the following section Installing Texx for Manual Startup.

Installing Texx for Manual Startup

1. Drag the Texx Folder to the desired location.

2. Locate the files "Profile.exec" and "Shutdown.exec" in the Texx Folder.

3. Locate the Preferences folder in your System Folder.

4. Drag the icons for the "Profile.exec" and "Shutdown.exec" files into the
Preferences folder. You may create an alias for both file and drag the aliases

into the Preferences folder.

5. Locate the Texx icon in the Texx Folder and double click it. This will start
Texx. On startup, Texx will execute the "Profile.exec" that was just put

into the Preferences folder.

6. Texx is now ready for further work.

Operating Texx

Regardless of the mode of operation, once Texx is up and running, it behaves identically. Texx
uses a window called "Texx System Window" for communications with the user. The Texx
System Window displays all error messages and output of the SAY instruction. The Texx System
Window must always be active, if it is closed, Texx will terminate. Texx will allow only four
windows to be open at one time, that includes the Texx System Window. When an exec is
executing, it requires a window, if one is not available, the exec will not execute.

Texx Menus

This version of Texx has minimal text editing facilities. Therefore, the menus are very basic and
simplistic.

File Menu

NEW Or Command-N will open a new empty window. The
user will be prompted for a new file name and location.

After replying, a new, empty window will be opened.

OPEN Or Command-O will open an existing file. The user will

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
be prompted for a file name with the standard file open

dialog box. If the file selected is a Stationary Pad, the user will be
further asked to name the new copy of the Stationary Pad. Once the
new name is entered, a new file is created and the contents of the
Stationary Pad are put into the new file.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
CLOSE Or Command-W will close the frontmost window and the

file associated with the window. Please note that if the
frontmost window is the Texx System Window, Texx will

terminate.

SAVE Or Command-S will save the contents of the frontmost
window to its associated file. Neither the window or the file
will be closed, both will remain open.

SAVE AS Will save the contents of the frontmost window to a new
file. The user will be prompted for a new file name. Once

the new name is entered, the contents of the window are
saved to the new file and the old file is closed.

PAGE SETUP Not implemented in this release of Texx.

PRINT Not implemented in this release of Texx.

QUIT Or Command-Q will terminate Texx. If there are other
open windows for which the contents have not been saved,

the user is asked if the contents should be saved. After all the
windows have been closed, Texx will terminate.

Edit Menu

CUT Or Command-X will cut the current selection from the
frontmost window. The contents cut may be undone by

Pasting them back into the window.

COPY Or Command-C will copy the current selection from the
frontmost window. The contents may then be pasted

elsewhere. The difference between this option and CUT is that the
COPY leaves the source intact and CUT removes the selection from
the souce window.

PASTE Or Command-V will paste the contents of the scrap into the
cursor position in the frontmost window. The scrap

contains data from other applications, or the CUT or COPY
options.

CLEAR Will clear the selected source from the frontmost window.
This option works similar to the CUT option.

Exec Menu

RUN EXEC Or Command-R will execute the exec in the
frontmost window.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Additional entries These additional entries are appended to the Exec
menu by the ADDEXECMENU command. These entries

are names of execs. Selecting one of them will execute that
exec.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
Window Menu

TEXX SYSTEM WINDOWThis option will move the Texx
System Window to the front and make it the frontmost

window. If the entry is check marked, the Texx System
Window is already the frontmost. There is no action taken if
the entry is checked and selected.

Additional entries These additional entries are appended to the Window
menu everytime a new window is opened and deleted

everytime a window is closed. The frontmost window will
be check marked. Selection one of these entries will bring

that window to the front and make it the frontmost window.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

This page intentionally left blank

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Appendix
Texx Error Messages

Types of Error Messages

Texx has several errors that may be generated from startup to shutdown. In addition to the errors
generated by Texx, other errors may be generated by the Macintosh operating system. This
appendix will list only the Texx generated errors. For the Macintosh errors, please consult Inside
Macintosh Volumes I - VI or whatever publication that may list them.

Texx errors are given to the user in one of three ways. First, some messages will display a dialog
box with some text describing the error. For example, if Texx is started up on a pre-System 7
system, a dialog box will be displayed with the message that Texx must be run on a System 7
system. Second, the Texx System Window will display the error with a short text message
describing the error. These errors are usually errors generated by the parser. In all cases, the
execution of the exec is halted and the Texx System Window is brought to the front with the
error message displayed. The third type of error will be returned in the pre-defined variable RC.
When using instructions that affect RC, RC should always be checked after the instruction has
been executed. In most cases, the instruction was not properly completed. It is up to the exec
author to check the variable and take whatever action necessary. An example of this error is
when sending an external command to another application. RC may have any number of
different errors.

There are two other possible error messages. They are both generated when sending external
commands. These error messages are returned in the pre-defined variables AERC and
AERCSTRING. AERC is a numeric value returned by the Apple Event routines. These errors
are documented in Inside Macintosh Volume VI and in the Apple Event Registry.
AERCSTRING is a string variable that may be returned by the application receiving an external
command. The application may return a string describing an error. This return string is optional
and may not be present. AERC and AERCSTRING are meant to provide more information
about the error than what RC can provide. IF RC is zero, than the command was successful. If,
however, RC is not zero, then AERC and AERCSTRING can provide additional information.

Texx error messages are of the following format:

TEXXnnnn - descriptive message.

Every message has the prefix of TEXX followed by a number and a short text message
describing the error. Use the number given to lookup the error message. In most cases, the text
describing the error message is descriptive enough to determine the problem.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

Texx Error Messages

5000 - Gestalt - Gestalt function not available.
The Gestalt function is not available. Texx uses the Gestalt function to

determine its operating environment. If Gestalt is not available, Texx cannot
get the required information. This error will probably mean that Texx is not running
under System 7.

5001 - Too many windows, only 4 allowed.
Texx only allows four windows to be open. This message means that the

four windows are already open. To open the window desired, close an open
window.

5002 - Error reading resource file.
Error reading a resource from the Texx application file. Probably means

that the Texx application is corrupted and should be reinstalled.

5003 - Error opening file.
Error opening a file. This error will probably not happen. If it does, it

probably means that something is wrong with the disk directory.

5004 - File too large.
The file must be 32k in size. This is a restriction of TextEdit. It is doubtful
that an exec will be larger than 32k.

5005 - Out of memory.
Texx is constantly allocating and deallocating memory. This error should

rarely happen. Try terminating and starting Texx again.

5006 - Error reading the file.
If this error happens, it probably means that the file is corrupted.

5007 - Error closing the file.
Tried to close a file and couldn't. This error should be rare. Could be a

problem with the disk directory.

5008 - Error writing the file.
This error could mean that the disk is full. Possibly an error with the disk.

5009 - Error converting the Clipboard.
When switching from an application to Texx, converting a clipboard could
generate an error. Seems to happen when switching from a graphics

program. Can be ignored unless trying to paste text from another
application. Try it again.

5010 - Error installing Apple Event handler.
There was an error installing an Apple Event handler. Probably means that

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
Texx will have other problems with external commands. Check that System
7 is running and try starting Texx again.

5011 - Error processing Apple Event.
Texx received an Apple Event for which there is not handler. Try to find

out what event it is and report it to me.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
5012 - Print not supported.

Printing is not yet supported.

5013 - Gestalt error.
The Gestalt function returned an error. Try starting Texx again.

5014 - Not running under System 7.0.
Texx must run under System 7.

5015 - Texx command invalid.
An error was detected with a command. Depending on where the error

occurred, it could be on the statement preceding the one displayed.

5016 - Invalid Texx exec, must start with comment.
A Texx exec must start with a comment.

5017 - Invalid process name.
The target name given in an ADDRESS instruction was invalid. Probably

an invalid character or invalid length. This error should be returned in the
variable RC.

5018 - Process not active.
The target name of an ADDRESS instruction was not valid. When an

ADDRESS instruction is processed and the process name is verified, Texx
then checks to make sure that the process (application) is active. If not active,
Texx cannot pass external commands. This error is returned in the variable RC.

5019 - Missing '=' in expression.
An '=' was missing in an instruction.

5020 - Error Pop'ing expression stack.
There was an error getting an expression value from the expression stack.

The expression stack is quite large and this error should not occur. If it does,
break the instruction into smallar parts.

5021 - Error in expression.
An error was found in an expression. Depending on where the error

occurred, the error may be in the statement previous to the one shown.

5022 - Incompatible operands.
An expression was evaluated with operands that are incompatible. For

example, adding a string value to a numeric value would make them
incompatible.

5023 - Invalid operands.
An expression was evaluated with operands not consistant with the
expression.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description

5024 - Divide by zero.
An expression that would result in a division by zero was found.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
5025 - Expression stack overflow.

The expression stack overflowed. This should be rare because the stack is
quite large. If it does occur, split the expression into smaller pieces.

5026 - Missing right parenthesis in expression.
A matching right parenthesis in an expression is missing.

5027 - Error in BY expression of DO statement.
An error in the BY expression of a DO statement was found. Check the BY
portion of the DO statement.

5028 - Error in DO statement.
An error in a DO statement was found.

5029 - Error in FOR expression of DO statement.
An error in the FOR expression of a DO statement was found. Check the

FOR portion of the DO statement.

5030 - Error in TO expression of DO statement.
An error in the TO expression of a DO statement was found. Check the TO
portion of the DO statement.

5031 - Error in IF statement expression.
An error in an IF expression was found.

5032 - Missing THEN statement in IF statement.
The THEN of an IF statement is missing.

5033 - Error or instruction not yet implemented.
An undetermined error was found. Probably an instruction that is not yet

implemented.

5034 - No previous ADDRESS instruction executed.
An ADDRESS instruction with no parameters that is meant to swap with the
previous ADDRESS executed was processed. The previous ADDRESS

with which to swap with has not yet been executed. In other words, there is no
process to switch.

5035 - Invalid label.
A label in invalid. Could be a variable of a different type.

5036 - Invalid target of SIGNAL or GOTO.
The target of the GOTO or SIGNAL was invalid. Could be a variable of a
different type.

5037 - Invalid address of SIGNAL or GOTO.
The address (label) of a SIGNAL or GOTO is invalid. Could be missing

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
or a label of a different type.

5038 - Label not found.
A label was not found.

5039 - Invalid Apple Event target address.
The target address was invalid. This error is returned in the variable RC.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
5040 - Error creating Apple Event.

An error occurred creating an Apple Event. This error is returned in the
variable RC. The variable AERC will contain more information.

5041 - Error sending Apple Event.
An error occurred sending an Apple Event. This error is returned in the

variable RC. The variable AERC will contain more information.

5042 - Invalid Apple Event.
The Apple Event is invalid. This error is returned in the variable RC.

5043 - Apple Event not found.
The Apple Event was not found. The Apple Event either is invalid or not

yet supported.

5044 - Invalid path name.
The path name supplied was invalid. Could be invalid characters, invalid

lengths, or a partial path name.

5045 - No previous path.
A PATH instruction without any parameters was processed. This PATH

instruction is meant to swap the current path with the previous path. This error
means that a previous was never executed.

5046 - Error creating Apple Event description record.
An error creating an Apple Event descriptor record was generated. This

error is returned in the variable RC. The variable AERC will contain more
information.

5047 - Error creating Apple Event Description list record.
An error creating a descriptor list was generated. This error is returned in

the variable RC. The variable AERC will contain more information.

5048 - Error creating Alias for file.
An error occurred creating an Alias record. This error should not occur.

However, if it does occur, the external command will not be processed.

5049 - Missing Apple Event parameters.
Apple Event parameters are missing. This error is returned in the variable

RC. The variable AERC might contain more information.

5050 - Invalid path name.
The supplied path name is invalid. Probably the path name was a partial

path name and the full path name could not be determined.

5051 - Find folder error.
There was an error with the FindFolder function. This error should not

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
happen. If it does, there is possibly an error with the System Folder.

5052 - Error creating FSSpec.
There was an error creating an FSSpec. This error should not occur.

5053 - Error creating Alias.
There was an error creating an Alias record. This error should not occur.

Chapter 1 - Texx Language Description

Chapter 1 - Texx Language Description
5054 - Invalid Finder window.

The finder window supplied was invalid.

5055 - Error in window specification.
An error in window type supplied. Should be MAINWINDOW,

INFOWINDOW, or SHARINGWINDOW.

5056 - Invalid window view type.
Invalid window view type. Should be BYNAME, BYTYPE, etc.

5057 - Apple Event Long Integer error.
An error supplying numeric values such as icon locations or window sizes

was found.

5058 - Invalid Zoom Window value, must be IN or OUT.
The Zoom Window IN or OUT parameters were missing.

5059 - Could Not Display ABOUT Dialog Box.
An error occurred trying to display the ABOUT dialog box.

5060 - Text file larger than 32k.
The current file has exceeded the TextEdit maximum of 32k. No more

additions to the file can be made.

Chapter 1 - Texx Language Description

